INTRODUCTION TO GENETIC EPIDEMIOLOGY
(GBIO0015-1)

Prof. Dr. Dr. K. Van Steen



Introduction to Genetic Epidemiology Chapter 5: Population-based genetic association studies

CHAPTER 5: POPULATION BASED ASSOCIATION STUDIES
1 Introduction

1.a Dissecting human disease in the post-genomic era

1.b Genetic association studies

2 Preliminary analyses

2.a Hardy-Weinberg equilibrium

2.b Missing genotype data

2.c Haplotype and genotype data

2.d Measures of LD and estimates of recombination rates

2.e SNP tagging

K Van Steen 284



Introduction to Genetic Epidemiology

Chapter 5: Population-based genetic association studies

3 Tests of association: single SNP

4 Tests of association: multiple SNPs

5 Dealing with population stratification
5.a Spurious associations

5.b Genomic control

5.c Structured association methods

5.d Other approaches

K Van Steen

285



Introduction to Genetic Epidemiology Chapter 5: Population-based genetic association studies

6 Multiple testing

6.a General setting

6.b Controlling the type | error

7 Assessing the function of genetic variants

8 Proof of concept

K Van Steen 286



Introduction to Genetic Epidemiology

Chapter 5: Population-based genetic association studies

1 Introduction

1.a Dissecting human disease in the postgenomic era
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Introduction

* The complete genome sequence of humans and of many other species
provides a new starting point for understanding our basic genetic makeup
and how variations in our genetic instructions result in disease.

 The pace of the molecular dissection of human disease can be measured by
looking at the catalog of human genes and genetic disorders identified so
far in Mendelian Inheritance in Man and in OMIM, its online version, which
is updated daily (www.ncbi.nlm.nih.gov/omim).

(V. A. McKusick, Mendelian Inheritance in Man (Johns Hopkins Univ. Press, Baltimore, ed.
12, 1998))
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» Enter one or more search terms.

+ Tlse Limits to restrict vour search by search field chromosome. and other criteria.
» Use Index to browse terms found i OMIM records.

» TUse History to retrieve records from previous searches. or to combine searches.

I OMIM ® - Online Mendelian Inheritance in Man ®

Welcome to OMIM ® | Online Mendelian Inheritance in Man ® . OMIM is a comprehensive, autheritative, and timely compendium of
hwman genes and genetic phenotypes. The full-text, referenced overviews in OMIM contain information on all known mendelian
disorders and over 12,000 genes. OMIM focuses on the relatonship between phenotype and genotype. It is updated daily, and the entries
contain copious links to other genetics resources.

This database was initiated in the early 1260s by Dr. Victor A McKusick as a catalog of mendelian traits and disorders, entitled
Mendelian Inheritance i Man (MIM). Twelve book editions of MIM were published between 1966 and 1998, The online version,
OMIM. was created in 1985 by a collaboration between the National Library of Medicine and the Wiliam H. Welch Medical Library at
Johns Hopkins. It was made generally available on the internet starting in 1387 In 1995, OMIM was developed for the World Wide Web
by NCBL the National Center for Biotechnology Information.

ONIM is authored and edited ar the McKusick-Nathans Instinite of Genetic Medicine, Johns Hopkins University School of Medicine,

K Van Steen

289



Introduction to Genetic Epidemiology Chapter 5: Population-based genetic association studies

Introduction

e OMIM Statistics for November 1, 2009: Number of entries
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Introduction

e Beginning in 1986, map-based gene discovery (positional cloning) became
the leading method for elucidating the molecular basis of genetic disease.

* Almost all medical specialties have used this approach to identify the
genetic causes of some of the most puzzling human disorders.

e Positional cloning has also been used reasonably successfully in the study of
common diseases with multiple causes (so-called complex disorders), such
as type | diabetes mellitus and asthma.
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Positional cloning

® WO s

http://www.molecularlab.it/public/data/GFPina/200924223125 positional%20cloning.JPG)
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Terminology

e BAC: Bacterial Artificial Chromosome. A type of cloning vector derived from
the naturally-occurring F factor episome. A BAC can carry 100 - 200 kb of
foreign DNA / YAC: Yeast Artificial Chromosome

* Cloning vector: A DNA construct capable of replication within a bacterial or
yeast host that can harbor foreign DNA, facilitating experimental
manipulation of that DNA segment.
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Terminology

 Complex disease: Condition caused by many contributing factors. Such a
disease is also called a multifactorial disease.
- Some disorders, such as sickle cell anemia and cystic fibrosis, are
caused by mutations in a single gene.
- Common medical problems such as heart disease, diabetes, and obesity
likely associated with the effects of multiple genes in combination with
lifestyle and environmental factors.
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|dentification of genes underlying human Mendelian traits and genetically complex traits in
humans and other species. Cumulative data for human Mendelian trait genes (to 2001) include all
major genes causing a Mendelian disorder in which causal variants have been identified (58, 59).

This reflects mutations in a total of 1336 genes. Complex trait genes were identified by the
whole-genome screen approach and denote cumulative year-on-year data described in this review.

(Glazier et al 2002)
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Introduction

* With the availability of the human genome sequence and those of an

increasing number of other species, sequence-based gene discovery is

complementing and will eventually replace map-based gene discovery.

 These and other recent developments in the field have caused a paradigm

shift in biomedical research:

Structural genomics
Genomics

Map-based gene discovery
Monogenic disorders
Specific DNA diagnosis
Analysis of one gene

Gene action

Etiology (specific mutation)

One species

Functional genomics

Proteomics

Sequence-based gene discovery

Multifactorial disorders

Monitoring of susceptibility

Analysis of multiple genes in gene families, pathways, or systems
Gene regulation

Pathogenesis (mechanism)

Several species
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Introduction

 |nitial analyses of the completed chromosomal sequences suggest that the
number of human genes is lower than expected.

* These findings are consistent with the idea that variations in gene
regulation and the splicing of gene transcripts explain how one protein can
have distinct functions in different types of tissue.

e At the beginning of the 21°' century, it also seemed likely that obvious
deleterious mutations in the coding sequences of genes are responsible for
only a fraction of the differences in disease susceptibility between
individuals, and that sequence variants affecting gene splicing and
regulation must play an important part in determining disease
susceptibility.
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Introduction

* As only a small proportion of the millions of sequence variations in our
genomes will have such functional impacts, identifying this subset of
sequence variants is a challenging task.

 The success of global efforts to identify and annotate sequence variations in
the human genome, which are called single-nucleotide polymorphisms
(SNPs), is reflected in the abundance of SNP databases

- www.ncbi.nlm.nih.gov/SNP,
- http://snp.cshl.org,
- http://hgbase.cgr.ki.se.

 However, the follow-up work of understanding how these and other
genetic variations regulate the phenotypes (visual characteristics) of human
cells, tissues, and organs will occupy biomedical researchers for all of the
21st century
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1.b Population-based genetic association studies

Introduction

e The goal of population association studies is to identify patterns of
polymorphisms that vary systematically between individuals with different
disease states and could therefore represent the effects of risk-enhancing
or protective alleles.

Most recent common ancestor

Time © Case
© Control

{} Ancestral

mutation

|1l i LA
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Introduction

* When performing a genetic association study, there are a number of pitfalls
one should be aware of.
e Perhaps the most crucial one is related to the realization that some
patterns may arise simply by chance.
e To distinguish between true and chance effects, there are two routes to be
taken:
- Set tight standards for statistical significance
- Only consider patterns of polymorphisms that could plausibly have
been generated by causal genetic variants (use understanding of
human genetic history or evolutionary processes such as recombination
or mutation)
- Adequately deal with distorting factors, including missing data and
genotyping errors (quality control measures)
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Introduction

 Hence, the key concept in a (population-based) genetic association study is
linkage disequilibrium.

+ «— Initial mutation (+) occurs on a
chromosomal background (shaded)

i

I RO I

I
{Many generations) —w

0 % | | : retaining LD
’_'_L'_‘ I_VJ_V_\ with +
(R R o_mutation

T

e This gives the rational for performing genetic association studies

Areas
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Types of genetic association studies

e Candidate polymorphism
- These studies focus on an individual polymorphism that is suspected of
being implicated in disease causation.
e Candidate gene
- These studies might involve typing 5—-50 SNPs within a gene (defined to
include coding sequence and flanking regions, and perhaps including
splice or regulatory sites).
- The gene can be either a positional candidate that results from a prior
linkage study, or a functional candidate that is based, for example, on
homology with a gene of known function in a model species.
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Types of genetic association studies

* Fine mapping
- Often refers to studies that are conducted in a candidate region of
perhaps 1-10 Mb and might involve several hundred SNPs.
- The candidate region might have been identified by a linkage study and
contain perhaps 5-50 genes.
e Genome-wide
- These seek to identify common causal variants throughout the genome,
and require >300,000 well-chosen SNPs (more are typically needed in
African populations because of greater genetic diversity).
- The typing of this many markers has become possible because of the
International HapMap Project and advances in high-throughput
genotyping technology
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Types of population association studies

 The aforementioned classifications are not precise: some candidate-gene
studies involve many hundreds of genes and are similar to genome-wide
scans.

e Typically, a causal variant will not be typed in the study, possibly because it
is not a SNP (it might be an insertion or deletion, inversion, or copy-number
polymorphism).

* Nevertheless, a well-designed study will have a good chance of including
one or more SNPs that are in strong linkage disequilibrium with a common
causal variant.
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Analysis of population association studies

Statistical methods that are used in pharmacogenetics are similar to
those for disease studies, but the phenotype of interest is drug response
(efficacy and/or adverse side effects).

In addition, pharmacogenetic studies might be prospective whereas
disease studies are typically retrospective.

Prospective studies are generally preferred by epidemiologists, and
despite their high cost and long duration some large, prospective cohort
studies are currently underway for rare diseases.

Often a case—control analysis of genotype data is embedded within these
studies, so many of the statistical analyses that are discussed in this
chapter can apply both to retrospective and prospective studies.
However, specialized statistical methods for time-to-event data might be
required to analyse prospective studies.
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Analysis of population association studies

e Design issues guide the analysis methods to choose from:

Dritails

Advantages

Disadvartages

Statistical anakysis method

Crose sectioral

Cohart

Case-conirol

Estrerne values

Case-parent friads

Case-parent-
grandparent septets
Gereral pedigrees

Case-only

[NA- poaling

Genatype and phenotype ie, note disease status
ar quantitative trait value ) a andarm sample from
population

Genatype subsection of population and fallos
disease inciderce for specified time pericd
Genatype specified number of affected (case) and
unaffected [control) individuals. Cases usualty
abtained fram family practitiorers or disease
registries, controls obtained from random
population sample or comeenience sample
Genatype indiidualswith ecreme thigh orlow)
waluesof a quantitative trait, as established from
initial cross-sectional or cohort sample

Genatype affected individuals plus their parents
(affected individuals determined from initial
cross-seckional, cohort, or disease- cutcome
barsed sarnple)

Genotype affected individuals plus their parerits
and grandparents

Genatype random sample or disease-cutoome
barsed sarnple of families from general population.
Phenctypee for disease trait or quantitatice trait
Genatype only affected individualy, obtained

from iritial cress-sectional, cohe, or diszase-
autcome based sample

Applies tovariety of abowve designs, but gencdyping
iz of pools of ampwhe re between two and 100
indeidualks, rather than on an individual basis

Inexpensive. Provides estimate of
disease prevalence

Prowides estimate of diszase
nddenee

No need fiar fallow- up.
Prowides estimites of ecposure
effects

Geniobype anky most informative
individuals hence save on
genctyping costs

Rebust to population stratifiction
Can estimate maternal and
imprinting effects

Rebust to pepulation stratifiction
Can estimate maternal and
imprinting effecs

Higher powerwith large families.
Sarnple miay already exist from
frkage studies

Wost powerful design for
detection of imteraction effects

Potentialy inmpensive compared
with indridual genotyping (but
technology still under
development)

Few affected individuals if
disease rare

Expensive o fallow. up.
|szues with drop- cut
Requires caneful selection of
controks
Patertial for carfounding
(e, population stratification)

Mo estimate of true genetic
effect sres

Less powerful than case-
control design

Grardparents rarely available

Expensive to genatype.
Mariy mizsing individuals

Can only estimate interaction
effects, Very sensitive to
population stratification
Hard to estimate different
eeperimental sounces of

warianm

Logistic mgression, 3 bests of
assodiation or inear regression

Survival anakysis methods

Logistic mgression,
i tests of association

Linear regressicon, non-parametric,
arpermutation approaches

Trarsmission| disequilibriurm test,
conditional leqgistic regressian or
log-linear models

Log-linear modeks

Pedigree disequiibriumn test,

family. based association test, quantitative
transmissicn/disequilibivm test

Logistic regressian, 3 testsaf

assadation

Estimation of components of variance

Table 2: study designs for genetlc assaclation studles

(Cordell and Clayton, 2005)
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Analysis of population association studies

 The design of a genetic association study may refer to

- subject design (see before)

- marker design:
= Which markers are most informative? Microsatellites? SNPs? CNVs?
= Which platform is the most promising?

- study scale:
= Genome-wide
= Genomic

K Van Steen 307



Introduction to Genetic Epidemiology Chapter 5: Population-based genetic association studies

Analysis of population association studies

 Marker design

- Recombinations that have occurred since the most recent common
ancestor of the group at the locus can break down associations of
phenotype with all but the most tightly linked marker alleles.

- This permits fine mapping if marker density is sufficiently high (say, >1
marker per 10 kb).

- When the mutation entered into the population a long time ago, then a
lot of recombination processes may have occurred, and hence the
haplotype harboring the disease mutation may be very small.

- This favors typing a lot of markers and generating dense maps
- The drawback is the computational and statistical burden involved
with analyzing such huge data sets.
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Analysis of population association studies

e Direct versus indirect associations

- The two direct associations that are indicated in the figure below,
between a typed marker locus and the unobserved causal locus, cannot
be observed, but if r* (a measure of allelic association) between the two

loci is high then we might be able to detect the indirect association
between marker locus and disease phenotype.

imdirecy: e > Disease
.:I':.'.‘ui.ll'_'idTiLH'I' PN s phenotype

Direct
association

Direct

association
| |
| 1 —Haplotype

Typed marker locus Unobserved causal locus
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Analysis of population association studies

e Scale of genetic association studies

candidate gene approach ,Can 't see the forest ﬂar the ol

E_; s o i

_trees

VS

genome-wide screening approach
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Analysis of population association studies

e Scale of genetic association studies: multi-stage designs

Number of SNPs

\ f Genoty
pe full set
Stage 1 R R k R ﬂ ﬂ R \ of SNPs in relatively
small population at

/- liberal p value
R R Iff
\ /
Screen second,

larger population
at more stringent
P value

Stage 2

Stage 3 k

Optional third stage
forincreased
stringency

e Zie il e e
e
e e 5 ZHe 50
e 5o Sile e SHpe
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Power of genetic association studies

e Broadly speaking, association studies are sufficiently powerful only for
common causal variants.

 The threshold for common depends on sample and effect sizes as well as
marker frequencies, but as a rough guide the minor-allele frequency might
need to be above 5%.

e The common disease / common variant (CDCV) hypothesis argues that
genetic variations with appreciable frequency in the population at large,
but relatively low ‘penetrance’ (or the probability that a carrier of the
relevant variants will express the disease), are the major contributors to
genetic susceptibility to common diseases.
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Motivation and consequence of CDCV

e If multiple rare genetic variants were the primary cause of common
complex disease, association studies would have little power to detect
them; particularly if allelic heterogeneity existed.

 The major proponents of the CDCV were the movers and shakers behind
the HapMap and large-scale association studies: When this hypothesis is
true, then we may be able to characterize the variation using a block like
structure of common haplotyopes
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Motivation and consequence of CDRV

 The competing hypothesis is cleverly the Common Disease-Rare Variant
(CDRV) hypothesis. It argues that multiple rare DNA sequence variations,
each with relatively high penetrance, are the major contributors to genetic
susceptibility to common diseases.

e This may be the case that should expect extensive alleles or loci are
interacted (Pritchard, 2001).

e Although some common variants that underlie complex diseases have been
identified, and given the recent huge financial and scientific investment in
GWA, there is no longer a great deal of evidence in support of the CDCV
hypothesis and much of it is equivocal...

e Both CDCV and CDRV hypotheses have their place in current research
efforts.
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The role of genetic association studies in complex disease analysis

Which gene hunting method is most
likely to give success?

 Monogenic “Mendelian” diseases
- Rare disease
A

rare, monogenic )
(linkage) - Rare variants
§ * Highly penetrant
"5 .
8 ° [+, common, complex e Complex diseases
T ; . .y .
AL (association) - Rare/common disease

v

- Ra re/common variants
Frequency

= Variable penetrance

(Slide: courtesy of Matt McQueen)
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Factors influencing consistency of gene-disease associations

e Variables affecting inferences from experimental studies:

In vitro or in vivo system studied

Cell type studied

Cultured versus fresh cells studied

Genetic background of the system

DNA constructs

DNA segments that are included in functional (for example, expression)
constructs

Use of additional promoter or enhancer elements

Exposures

Use of compounds that induce or repress expression

Influence of diet or other exposures on animal studies
(Rebbeck et al 2004)
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Factors influencing consistency of gene-disease associations

e Variables affecting epidemiological inferences:

Inclusion/exclusion criteria for study subject selection

Sample size and statistical power

Candidate gene choice

A biologically plausible candidate gene

Functional relevance of the candidate genetic variant

Frequency of allelic variant

Statistical analysis

Consideration of confounding variables, including ethincity, gender or
age.

Whether an appropriate statistical model was applied (for example,
were interactions

considered in addition to main effects of genes?)

Violation of model assumptions
(Rebbeck et al 2004)
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2 Preliminary analyses

2.a Introduction

2.b Hardy-Weinberg equilibrium
2.c Missing genotype data

2.d Haplotype and genotype data

Measures of LD and estimates of recombination rates

2.e SNP tagging
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2.a Introduction

e Pre-analysis techniques often performed include:
- testing for Hardy—Weinberg equilibrium (HWE)
- strategies to select a good subset of the available SNPs (‘tag’ SNPs)
- inferring haplotypes from genotypes.
e Data quality is of paramount importance, and data should be checked
thoroughly before other analyses are started.
e Data should be checked for
- batch or study-centre effects,
- for unusual patterns of missing data,
- for genotyping errors.
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Introduction

e Recall that genotype data are not raw data:
- Genotypes have been derived from raw data using particular software
tools, one being more sensitive than the other ....
e For instance, SNP quality control involves assessing
- missing data rates,
Hardy-Weinberg equilibrium (HWE),
allele frequencies,

Mendelian inconsistencies (using family-data)

sample heterozygosity, ...
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@ AREDS (lllumina 100K) Normalized Allele Intensity

® dbGaP study phs000001: rs203674 Genotype Summary
for SNP rs203674 (623 individual samples)
Genotype Genotype Frequency -
phv00000173 - e — =
e e P e o A& (153)
Case 51 157 186 o AB (253)
& BB (214)
Control 2 | s | 2 | x = (3)
=
w
Allele Allele Frequency E
—
phv00000173 P = e =
{ T N TEVTS P " T oty iy L] ] i 1 —
Case 259 529 L
m
Control 252 o
[
q
Number of Samples Success Rate
phv0D0O0O0173 Total " p— p—
(I R SN TR NN TN Y T U Y S TN T M M T T R 1
Case 394 .. o Sy T ¢
= o e € BT - L & I Fa0l
Control 193 ™ T T T T
0.0 01 0.2 0.3 0.4 0.5
Case pHWE: 0.053
Control pHWE: 1.000 Allele A (A) intensity
Odds ratio of minor allele "A’: 0.260
Chi-square : 109.447
p-value of Chi-square test: 1.29e-25

(using dbGaP association browser tools)
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2.b Hardy-Weinberg equilibrium

Deviations from HWE can be due to inbreeding, population stratification or
selection.

Researchers have tested for HWE primarily as a data quality check and have
discarded loci that, for example, deviate from HWE among controls at
significance level o= 10~ or 107"

Deviations from HWE can also be a symptom of disease association.

So the possibility that a deviation from HWE is due to a deletion
polymorphism or a segmental duplication that could be important in
disease causation should certainly be considered before simply discarding
loci...
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Hardy-Weinberg equilibrium testing

e Testing for deviations from HWE can be carried out using a Pearson
goodness-of-fit test, often known simply as ‘the x2 test’ because the test
statistic has approximately a x2 null distribution.

 There are many different x2 tests. The Pearson test is easy to compute, but
the X2 approximation can be poor when there are low genotype counts, in
which case it is better to use a Fisher exact test.

e Fisher exact test does not rely on the x2 approximation.

 The open-source data-analysis software R has an R genetics package that
implements both Pearson and Fisher tests of HWE
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Hardy-Weinberg equilibrium interpretation of test results

o A useful tool for interpreting the results of HWE and other tests on many
SNPs is the log quantile—quantile (QQ) p-value plot:

- the negative logarithm of the j-th smallest p-value is plotted against
—log (i / (L + 1)), where L is the number of SNPs.

e By a quantile, we mean the fraction (or percent) of points below the given
value. That is, the 0.3 (or 30%) quantile is the point at which 30% percent of
the data fall below and 70% fall above that value.

A 45-degree reference line is also plotted. If the two sets come from a
population with the same distribution, the points should fall approximately
along this reference line. The greater the departure from this reference
line, the greater the evidence for the conclusion that the two data sets have
come from populations with different distributions.
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Hardy-Weinberg equilibrium interpretation of test results

e Advantages of QQ plots include:

- The sample sizes do not need to be equal.

- Many distributional aspects can be simultaneously tested. For example,
shifts in location, shifts in scale, changes in symmetry, and the presence
of outliers can all be detected from this plot.

e Applied to genetic association studies and genetic association testing

- Deviations from the y = x line correspond to loci that deviate from the
null hypothesis.

- The close adherence of p-values to the black line over most of the range
is encouraging as it implies that there are few systematic sources of
spurious association.
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Hardy-Weinberg equilibrium interpretation of test results

* |n fact, spurious association is caused by two factors in population
stratification (see also later).
- A difference in proportion of individual from two (or more)
subpopulation in case and controls
- Subpopulations have different allele frequencies at the locus.

Population 1 Cases Population 2

Controls

Genotype .aa .Aa .AA

Y

Y
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Hardy-Weinberg equilibrium interpretation of test results
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(Balding 2006)
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2.c Missing genotype data
Introduction

e For single-SNP analyses, if a few genotypes are missing there is not much
problem.

e For multipoint SNP analyses, missing data can be more problematic
because many individuals might have one or more missing genotypes.

* One convenient solution is data imputation

- Data imputation involves replacing missing genotypes with predicted
values that are based on the observed genotypes at neighbouring SNPs.

e For tightly linked markers data imputation can be reliable, can simplify
analyses and allows better use of the observed data.

e For not tightly linked markers?
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Introduction

* Imputation methods either seek a best prediction of a missing genotype,
such as a
- maximume-likelihood estimate (single imputation), or
- randomly select it from a probability distribution (multiple
imputations).
 The advantage of the latter approach is that repetitions of the random
selection can allow averaging of results or investigation of the effects of the
imputation on resulting analyses.
 Beware of settings in which cases are collected differently from controls.
These can lead to differential rates of missingness even if genotyping is
carried out blind to case-control status.
- One way to check differential missingness rates is to code all observed
genotypes as 1 and unobserved genotypes as 0 and to test for
association of this variable with case-control status ...
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Reference
panel

>

| Inference
panel

. = SNPs typed in both panels

. = SNPs typed only in reference panel

Schematic drawing of imputation Scenario A. In this drawing, haplotypes are represented as horizontal boxes containing 0'sand 1's
ifor alternate SNP alleles), and unphased genotypes are represented as rows of 0's, 1's, 2's, and 7's (where '1' is the heterozygous state and '7' denotes
a missing genotype). The SNPs (columns) in the dataset can be partitioned into two disjoint sets: a set T (blue) that is genotyped in all individuals and
a set U (green) that is genotyped only in the haploid reference panel. The goal of imputation in this scenario is to estimate the genotypes of SMNPs in
set U in the study sample.
doi10.1371 fjournal. pgen. 1 000529.9001

(IMPUTE_v2: Howie et al 2009)
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| Haploid
reference

>

| Diploid
reference

| Inference
panel

. = SNPs typed in haploid reference panel only

’Uz = SNPs typed in both reference panels
. = SNPs typed in all panels

- Schematic drawing of imputation Scenario B. In this drawing, haplotypes are represented as horizontal boxes containing 0's and 1's
ifor alternate SNP alleles), and unphased genoty pes are represented as rows of 0s, 1's, 2's, and 's (where '1" is the heterozygous state and ‘7 denotes
a missing genotype). The SNPs (celumns) in the dataset can be partitioned into three disjoint sets: a set T (blue) that is genotyped in all individuals, a
set U; (yellow) that is genotyped in both the haploid and diploid reference panels but not the study sample, and a set U; (green) that is genotyped
enly in the hapleid reference panel. The goal of imputation in this scenario is to estimate the genotypes of SNPs in set U; in the study sample and
SNPs in the set Uy in both the study sample and, if desired, the diploid reference panel.
doi:10.1371 fjournal.pgen. 1 000529.g002

(IMPUTE_v2: Howie et al 2009)
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The power of imputation

 Power for Common versus Rare alleles: Plots of power (solid lines) and
coverage (dotted line) for increasing sample sizes of cases and controls (x-
axis).

- From left to right plots are given for increasing effect sizes (relative risk
per allele). Both power and coverage range from 0 to 1 and are given
on the y-axis. Results are for single-marker test of association.

- The first plot show the power for rare risk alleles (RAF,0.1) and the
second plot show the power for common risk alleles (RAF.0.1).
doi:10.1371/journal.pgen.1000477.g003 — see next 2 slides

 The power of imputing potential benefits of increasing SNP density on the
chips or from using imputation are greatest for low frequency SNPs.

(Spencer et al 2009)
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Bioinformatics
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Bioinformatics
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2.d Haplotype and genotype data
Introduction

* If we don’t observe that causative locus directly, we need to combine the
information of several markers in linkage disequilibrium (LD).
e Two approaches
- Haplotype based method
- tagSNPs based method

\ 4

@ WMITITTHN NEN NE)

(Jung 2007)

K Van Steen 335



Bioinformatics Chapter 5: Population-based genetic association studies

Introduction

e Underlying an individual’s genotypes at multiple tightly linked SNPs are the
two haplotypes, each containing alleles from one parent.

* Analyses based on phased haplotype data rather than unphased genotypes
may be quite powerful...

M1 1 1 2 2
DSL D d d d

M2 1
Test 1 vs. 2 for M1: D+dvs.d
Test 1 vs. 2 for M2: D+dvs.d
Test haplotype H1 vs. all others: Dvs.d

e If DSL located at a marker, haplotype testing can be less powerful
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Inferring haplotypes

e Direct, laboratory-based haplotyping or typing further family members to
infer the unknown phase are expensive ways to obtain haplotypes.
Fortunately, there are statistical methods for inferring haplotypes and
population haplotype frequencies from the genotypes of unrelated
individuals.

 These methods, and the software that implements them, rely on the fact
that in regions of low recombination relatively few of the possible
haplotypes will actually be observed in any population.

 These programs generally perform well, given high SNP density and not too
much missing data.
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Inferring haplotypes

e Software:
- SNPHAP is simple and fast, whereas PHASE tends to be more accurate
but comes at greater computational cost.
- FASTPHASE is nearly as accurate as PHASE but much faster.
 Whatever software is used, remember that true haplotypes are more
informative than genotypes.
* Inferred haplotypes are typically less informative because of uncertain
phasing.
- The information loss that arises from phasing is small when linkage
disequilibrium (LD) is strong.
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Measures of LD

LD will remain crucial to the design of association studies until whole-
genome reseqguencing becomes routinely available. Currently, few of the
more than 10 million common human polymorphisms are typed in any
given study.

If a causal polymorphism is not genotyped, we can still hope to detect its
effects through LD with polymorphisms that are typed (key principle behind
doing genetic association analysis ...).

LD is a non-quantitative phenomenon: there is no natural scale for
measuring it.

Among the measures that have been proposed for two-locus haplotype
data, the two most important are D’ (Lewontin’s D prime) and r (the
square correlation coefficient between the two loci under study).
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Measures of LD

 The measure D is defined as the difference between the observed and
expected (under the null hypothesis of independence) proportion of
haplotypes bearing specific alleles at two loci: pag- paps

A |a

B |Pas|Pas
b |Pab | Pab

- D’ is the absolute ratio of D compared with its maximum value.
- D’ =1:complete LD
« R’is the statistical correlation of two markers :
- When R*=1, knowing the genotypes of alleles of one SNP is directly
predictive of genotype of another SNP
D2
R? =
P(A)P(a)P(B)P(b)
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Properties for D’

e D’ is sensitive to even a few recombinations between the loci

e A disadvantage of D’ is that it can be large (indicating high LD) even when
one allele is very rare, which is usually of little practical interest.

e D’isinflated in small samples; the degree of bias will be greater for SNPs
with rare alleles.

e So, the interpretation of values of D’ < 1 is problematic, and values are
difficult to compare between different samples because of the dependence
on sample size.
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Properties for r°

e In contrastto D’, r’is highly dependent upon allele frequency, and can be
difficult to interpret when loci differ in their allele frequencies

« However, r* has desirable sampling properties, is directly related to the
amount of information provided by one locus about the other, and is
particularly useful in evolutionary and population genetics applications.

e Specifically, sample size must be increased by a factor of 1/r° to detect an
unmeasured variant, compared with the sample size for testing the variant

itself.
(Jorgenson and Witte 2006)
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1.e SNP tagging

Introduction

e Tagging refers to methods to
select a minimal number of SNPs
that retain as much as possible of
the genetic variation of the full
SNP set.

e Simple pairwise methods discard
one (preferably that with most
missing values) of every pair of
SNPs with, say, r*>0.9.

 More sophisticated methods can
be more efficient, but the most
efficient tagging strategy will

depend on the statistical analysis
to be used afterwards.

* |In practice, tagging is only
effective in capturing common
variants.

Maximum r?

Complete set l N l
V V
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Two good reasons for tagging

e The first principal use for tagging is to select a ‘good’ subset of SNPs to be
typed in all the study individuals from an extensive SNP set that has been
typed in just a few individuals.

- Until recently, this was frequently a laborious step in study design, but
the International HapMap Project and related projects now allow
selection of tag SNPs on the basis of publicly available data.

- However, the population that underlies a particular study will typically
differ from the populations for which public data are available, and a
set of tag SNPs that have been selected in one population might
perform poorly in another.

- Nevertheless, recent studies indicate that tag SNPs often transfer well
across populations
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Two good reasons for tagging

 The second use for tagging is to select for analysis a subset of SNPs that
have already been typed in all the study individuals.

* Although it is undesirable to discard available information, the amount of
information lost might be small (at least, that is what is aimed for when
applying SNP tagging algorithms).

* Reducing the SNP set can simplify analyses and lead to more statistical
power by reducing the degrees of freedom (df) of a test.
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Estimated recombination map
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P-value of Trend test of association

Schematic of how power is estimated. At the top of the figure is the recombination map and haplotypes estimated from the HapMap
project [1]. Using this population genetic information we simulate a case-control sample (grey lines) where the red dots indicate the disease locus
and blue dots indicate linked genetic variation. By performing a test of association at each SNP on the genotyping chip we can estimate power by
counting the number of simulation for which a test statistic exceed a significance threshold (dotted line), We compare genotyping chips by changing
the set of SNP at which we carry out a test, See Methods.
dei10.1371 journal.pgen.1000477.g001

(Spencer et al 2009)
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3 Tests of association: single SNP

Introduction

e Population association studies compare unrelated individuals, but
‘unrelated’ actually means that relationships are unknown and presumed to
be distant.

 Therefore, we cannot trace transmissions of phenotype over generations
and must rely on correlations of current phenotype with current marker
alleles.

e Such a correlation might be generated (but is not necessarily generated) by
one or more groups of cases that share a relatively recent common
ancestor at a causal locus.
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A toy example

AA AD 8o total

(A) Genotype counts

Case a=10 b =190 c=800 a+b+c= 1000
Control d=23 e =100 f=200 d+4e+f=1003
A B total

(B) Allele counts
Case xp=2a+b=210 xz=b+2c=1790 2{at+b+c)=2000
Control xy=2d+e=106 xp=d+2=100 2(d4eif)=2006

AA+AB BB AA AB+BB total

(C) Two ways of grouping heterozygotes with homozygotes
Case atb=200 c=800 a=I0 b4+c=990 a+btc=I1000
Control d4e=103 =900 c¢=3 d+e=I1000 d+e+f=1003

There are 1000 case samples and 1003 control samples, whose geno-
type distribution is shown in the table (A); the number of A and B
allele counts is in (BL The genotype counts in (C) are converted from
(A) by combining AB with either AA or BB. Note that the total counts
in {B) doubles the counts in (A), and the two tables in (C) correspond
to the dominant and recessive models if allele A is considered as
the risk allele.

(Li 2007)
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A toy example

e A Pearson’s test is a summary of discrepancy between the observed (O) and
expected (E) genotype/allele count:

= z (0; — E)°
i=1 E;

* For any y? distributed test statistic with df degrees of freedom, one can

decompose it to two y? distributed test statistics with df 1 and df 2 degrees
of freedom and their sum df 1 p df 2 is equal to df.
* For example, the test statistic in the genotype based test (GBT) can be
decomposed to two y?distributed values each with one degree of freedom.
 One of them is the test statistic in a commonly used test called Conchran—
Armitage test (CAT).
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A toy example

- CAT tests whether log(r), where r is the (hnumber of cases)/(number of
cases + number of controls) ratio, changes linearly with the AA, AB, BB
genotype with a non-zero slope.

- Note that since AB is positioned between AA and BB genotype, the
genotype is not just a categorical variable, but an ordered categorical
variable.

- Also note that although CAT is genotype based, its value is closer to the
allele-based ABT test statistic.
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A toy example: testing

goc <- ci{l0, 19G, 800, 3, 100, 900)

ac <- c(2#gcl1]+gcl2], gcl2]+2+gc[3], 2#gc[4]l+gc(5], gclBl+2=gc[E])
gel <= clgel1l+gel2], gecl3], gclél+gcl5l, gelBl)

ge2 <= clgel1],ge(2]+gcl3], gecld), gclBl+gc(6])

pvg <- chisq.test( matrix(gc, ncol=3, byrow=T)}, corr=FALSE)Sp.value
pva <- chisq.test( matrix{ac, ncol=2, byrow=T), corr=FALSE)Sp.value
pvgl <- chisq.test( matrix{gcl, ncol=2, byrow=T), corr=FALSE)}$§p.value
pvge <- chisqg.test( matrix(gc2, ncol=2, byrow=T), corr=FALSE)$p.value
pvb <- min(pvgl, pvg2)

print( c(pvg, pva, pvb)) # 6.918239e-09 9.150309e-10 1.224003e-09
pvg.f <- fisher.test{ matrix(gc, ncol=3, byrow=T))$p.value

pva.f <- fisher.test( matrix{ac, ncol=2, byrow=T))$p.value

pvgl.f <- fisher.test( matrix(gcl, ncel=2, byrow=T))§p.value

pvgd . f <- fisher.test{ matrix(gc2, ncol=2, byrow=T))$p.value

pvb.f <- min{pvgl.f, pvg2.f)

print( clpvg.f, pva.f, pvb.f)) # 2.412721e-09 &.047005e-10 1.132535e-09

pvcat <- prop.trend.testi{gcll:3], gcl1:3]+gc[4:6], score=c(D, 0.5, 1))%¥p.value
print( c(pvcat) ) # 9.820062e-10

ge <- go*2

ca # repeat the tests

print( c(pvg, pva, pvb)) # 4.786203e-17 4.716312e-18 8.379499%¢-18
print( c(pvg.f, pva.f, pvb.f)) # 1.231881e-17 3.485271e-18 6.810263e-18
print{ clpvcat) ) # 5.422T705e-18
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A toy example: testing

 What is the effect of choosing a different genetic model?

e What is the effect of choosing a genotype test versus an allelic test?

e Are allelic tests always applicable?

e When do you expect the largest differences between Pearson’s chi-square
and Fisher’s exact test?

e What is the effect of doubling the sample size on these tests?

e How can you protect yourself against uncertain disease models?
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A toy example: estimation

ci.or <- function(counts, alpha){ # alpha=0.05 corresponds to 95jCI
f <- gnorm(1- alpha/2) # if alpha=0.05, £=1.96

or <= counts[1]#counts[4]/(counts[2]*counts[3])

=q <- sqrt(l/counts[1]+1/counts[2]+1/counts[3]+1/counts[4])

upper <- expl loglor) + f=sq)

lower <- exp( logl(or) - f==zq)

res <- c(lower, or, upper)

res

¥

print{ ci.or(ac, 0.05}) # 1.650411 2.102878 2.679390
print{ ci.or{ac, 0.01}) # 1.5208428 2.102878 2.891338
ac <- ac#2 # double the sample size
print{ ci.or(ac, 0.05}) # 1.771784 2.102878 2.495842
print{ ci.or(ac, 0.01}) # 1.678927 2.102878 2.633882
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A toy example: estimation

o Will all packages give you the same output when estimating odds ratios
with confidence intervals, assuming the data and the significance level are
the same?

 What is the effect of decreasing the significance level?

e What is the effect of doubling the sample size?
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Which odds ratios can we expect?

e Many genome scientists are turning back to study rare disorders that are
traceable to defects in single genes, and whose causes have remained a
mystery.

 The change is partly a result of frustration with the disappointing results of
genome-wide association studies (GWAS).

e Rather than sequencing whole genomes, GWAS studies examine a subset of
DNA variants in thousands of unrelated people with common diseases.
Now, however, sequencing costs are dropping, and whole genome
sequences can quickly provide in-depth information about individuals,
enabling scientists to locate genetic mutations that underlie rare diseases
by sequencing a handful of people.

(Nature News: Published online 22 September 2009 | 461, 459 (2009) |
doi:10.1038/461458a)
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(A and B) Histograms of susceptibility allele frequency and MAF, respectively,
at confirmed susceptibility loci.
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(C) Histogram of estimated ORs (estimate of genetic effect size) at confirmed
susceptibility loci. (D) Plot of estimated OR against susceptibility allele
frequency at confirmed susceptibility loci. (lles 2008)
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The use of regression analysis

e Regression-type problems were first considered in the 18th century
concerning navigation using astronomy.

* Legendre developed the method of least squares in 1805. Gauss claimed to
have developed the method a few years earlier and showed that the least
squares was the optimal solution when the errors are normally distributed
in 1809.

 The methodology was used almost exclusively in the physical sciences until
later in the 19th century. Francis Galton coined the term regression to
mediocrity in 1875 in reference to the simple regression equation in the

form

v—v (x=x)
F .
SD,
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The use of regression analysis

e Galton used this equation to explain the phenomenon that sons of tall
fathers tend to be tall but not as tall as their fathers while sons of short
fathers tend to be short but not as short as their fathers.

e This effect is called the regression effect.

 We canillustrate this effect with some data on scores from a course

- When we scale each variable to have mean 0 and SD 1 so that we are
not distracted by the relative difficulty of each exam and the total
number of points possible.

How does this simplify the regression equation?
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The use of regression analysis

midterm

(Faraway 2002)
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The use of regression analysis

e Regression analysis is used for explaining or modeling the relationship
between a single variable Y, called the response, output or dependent
variable, and one or more predictor, input, independent or explanatory
variables, X, ..., X.

e When p=1itis called simple regression but when p > 1 it is called multiple
regression or sometimes multivariate regression.

e When there is more than one Y, then it is called multivariate multiple
regression

* Regression analyses have several possible objectives including

- Prediction of future observations.

- Assessment of the effect of, or relationship between, explanatory
variables on the response.

- A general description of data structure
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The use of regression analysis

e The basic syntax for doing regression in R is Im(Y~model) to fit linear
models and gim() to fit generalized linear models.

* Linear regression and logistic regression are special type of models you can
fit using Im() and glm() respectively.

e General syntax rules in R model fitting are given on the next slide.
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Syntax Model Comments
Y ~A Y=pB,+BA Straight-line with an mmplicit y-
intercept
Y~-1+A Y=pA Straight-line with no y-intercept:
that 1s, a fit forced through (0.,0)
Y~A-+IA"2) Y =B+ BA+ Py A Polynonual model; note that the

identity function I( ) allows terms
in the model to mclude normal

mathematical symbols.

Y~A+B Y=p,7B;A+ BB A fust-order model in A and B
without mteraction terms.

Y ~AB Y=p,+pAB A model containing only first-order
interactions between A and B.

Y ~ A*B Y =B, B;A+B,B+B;AB | A full first-order model with a term:
an equivalent codeis Y ~A+B +
A:B.

Y~A+B+C)y2 | Y=B,7B;A~PB,B~+B3C~+ | A model mcluding all first-order

B4AB + BsAC + BAC effects and interactions up to the n'd

order. where n 1s given by ( )"n.
An equivalent code in this case 1s
Y ~ A*B*C — A:B:C,
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The use of regression analysis

* Quantitative models always rest on assumptions about the way the world
works, and regression models are no exception.

 There are four principal assumptions which justify the use of linear
regression models for purposes of prediction:

linearity of the relationship between dependent and independent
variables

independence of the errors (no serial correlation)
homoscedasticity (constant variance) of the errors

= versustime
= versus the predictions (or versus any independent variable)
normality of the error distribution.

(http://www.duke.edu/~rnau/testing.htm)

K Van Steen 365



Bioinformatics Chapter 5: Population-based genetic association studies

Linear regression analysis

e If any of these assumptions is violated (i.e., if there is nonlinearity, serial
correlation, heteroscedasticity, and/or non-normality), then the forecasts,
confidence intervals, and insights yielded by a regression model may be (at
best) inefficient or (at worst) seriously biased or misleading.

e Violations of linearity are extremely serious--if you fit a linear model to data

which are nonlinearly related, your predictions are likely to be seriously in
error, especially when you extrapolate beyond the range of the sample
data.

 How to detect:

- nonlinearity is usually most evident in a plot of the observed versus
predicted values or a plot of residuals versus predicted values, which
are a part of standard regression output. The points should be
symmetrically distributed around a diagonal line in the former plot or a
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horizontal line in the latter plot. Look carefully for evidence of a
"bowed" pattern, indicating that the model makes systematic errors
whenever it is making unusually large or small predictions.
 How to fix: consider

- applying a nonlinear transformation to the dependent and/or
independent variables--if you can think of a transformation that seems
appropriate. For example, if the data are strictly positive, a log
transformation may be feasible. Another possibility to consider is
adding another regressor which is a nonlinear function of one of the
other variables. For example, if you have regressed Y on X, and the
graph of residuals versus predicted suggests a parabolic curve, then it
may make sense to regress Y on both X and X”2 (i.e., X-squared). The
latter transformation is possible even when X and/or Y have negative
values, whereas logging may not be.
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Linear regression analysis

e Violations of independence are also very serious in time series regression
models: serial correlation in the residuals means that there is room for
improvement in the model, and extreme serial correlation is often a
symptom of a badly mis-specified model, as we saw in the auto sales
example. Serial correlation is also sometimes a byproduct of a violation of
the linearity assumption--as in the case of a simple (i.e., straight) trend line
fitted to data which are growing exponentially over time.

e How to detect:
- The best test for residual autocorrelation is to look at an
autocorrelation plot of the residuals. (If this is not part of the standard

output for your regression procedure, you can save the RESIDUALS and
use another procedure to plot the autocorrelations.)
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- ldeally, most of the residual autocorrelations should fall within the 95%
confidence bands around zero, which are located at roughly plus-or-
minus 2-over-the-square-root-of-n, where n is the sample size.

- Thus, if the sample size is 50, the autocorrelations should be between
+/- 0.3. If the sample size is 100, they should be between +/- 0.2. Pay
especially close attention to significant correlations at the first couple
of lags and in the vicinity of the seasonal period, because these are
probably not due to mere chance and are also fixable.

 How to fix:

- Minor cases of positive serial correlation (say, lag-1 residual
autocorrelation in the range 0.2 to 0.4) indicate that there is some
room for fine-tuning in the model. Consider adding lags of the
dependent variable and/or lags of some of the independent variables.
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- Major cases of serial correlation usually indicate a fundamental
structural problem in the model. You may wish to reconsider the
transformations (if any) that have been applied to the dependent and
independent variables. It may help to stationarize all variables through
appropriate combinations of differencing, logging, and/or deflating.
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Linear regression analysis

e Violations of homoscedasticity make it difficult to gauge the true standard
deviation of the forecast errors, usually resulting in confidence intervals

that are too wide or too narrow. In particular, if the variance of the errors is

increasing over time, confidence intervals for out-of-sample predictions will

tend to be unrealistically narrow. Heteroscedasticity may also have the

effect of giving too much weight to small subset of the data (namely the

subset where the error variance was largest) when estimating coefficients.
 How to detect:

- look at plots of residuals versus time and residuals versus predicted
value, and be alert for evidence of residuals that are getting larger (i.e.,
more spread-out) either as a function of time or as a function of the
predicted value. (To be really thorough, you might also want to plot
residuals versus some of the independent variables.)

K Van Steen 371



Bioinformatics Chapter 5: Population-based genetic association studies

 How to fix:

- In time series models, heteroscedasticity often arises due to the effects
of inflation and/or real compound growth, perhaps magnified by a
multiplicative seasonal pattern. Some combination of logging and/or
deflating will often stabilize the variance in this case. Stock market data
may show periods of increased or decreased volatility over time--this is
normal and is often modeled with so-called ARCH (auto-regressive
conditional heteroscedasticity) models in which the error variance is
fitted by an autoregressive model. Such models are beyond the scope
of this course--however, a simple fix would be to work with shorter
intervals of data in which volatility is more nearly constant.
Heteroscedasticity can also be a byproduct of a significant violation of
the linearity and/or independence assumptions, in which case it may
also be fixed as a byproduct of fixing those problems.
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Linear regression analysis

e Violations of normality compromise the estimation of coefficients and the
calculation of confidence intervals. Sometimes the error distribution is
"skewed" by the presence of a few large outliers. Since parameter

estimation is based on the minimization of squared error, a few extreme
observations can exert a disproportionate influence on parameter
estimates. Calculation of confidence intervals and various signficance tests
for coefficients are all based on the assumptions of normally distributed
errors. If the error distribution is significantly non-normal, confidence
intervals may be too wide or too narrow.

 How to detect:

- the best test for normally distributed errors is a normal probability plot
of the residuals. This is a plot of the fractiles of error distribution versus
the fractiles of a normal distribution having the same mean and
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variance. If the distribution is normal, the points on this plot should fall
close to the diagonal line. A bow-shaped pattern of deviations from the
diagonal indicates that the residuals have excessive skewness (i.e., they
are not symmetrically distributed, with too many large errors in the
same direction). An S-shaped pattern of deviations indicates that the

residuals have excessive kurtosis--i.e., there are either two many or two
few large errors in both directions.
 How to fix:

- violations of normality often arise either because (a) the distributions of
the dependent and/or independent variables are themselves
significantly non-normal, and/or (b) the linearity assumption is violated.
In such cases, a nonlinear transformation of variables might cure both
problems. In some cases, the problem with the residual distribution is
mainly due to one or two very large errors. Such values should be
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scrutinized closely: are they genuine (i.e., not the result of data entry
errors), are they explainable, are similar events likely to occur again in
the future, and how influential are they in your model-fitting results?
(The "influence measures" report is a guide to the relative influence of
extreme observations.) If they are merely errors or if they can be
explained as unique events not likely to be repeated, then you may
have cause to remove them. In some cases, however, it may be that the
extreme values in the data provide the most useful information about
values of some of the coefficients and/or provide the most realistic
guide to the magnitudes of forecast errors.
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Linear regression analysis

 The value r2 is a fraction between 0.0 and 1.0, and has no units. An r2 value
of 0.0 means that knowing X does not help you predict Y.

 There is no linear relationship between X and Y, and the best-fit line is a
horizontal line going through the mean of all Y values. When

e r2 equals 1.0, all points lie exactly on a straight line with no scatter.
Knowing X lets you predict Y perfectly.

r’=0.0 r=0.5 r=1.0
- " /
-ﬁ:if /
] --..- --'.__ ,. .-
LTS " -
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Is linear regression the correct type of analysis for you?

Question Discussion

Can the relationship between X and Y be In many experiments the relationship between X and Y is

graphed as a straight line? curved, making linear regression inappropriate. Either
transform the data. or use a program (such as GraphPad
Prism) that can perform nonlinear curve fitting.

Is the scatter of data around the line Linear regression analysis assumes that the scatter is
Gaussian (at least approximately)? Gaussian.

Is the variability the same everywhere? Linear regression assumes that scatter of points arcund the
best-fit line has the same standard deviation all along the
curve. The assumption is viclated if the points with high or
low X values tend to be forther from the best-fit line. The
assumption that the standard deviation is the same everywhere
is termed homoscedasticity.

Do you know the X values precisely? The linear regression model assumes that X values are exactly
correct, and that experimental error or biological variability
only affects the Y values. This is rarely the case, but it 1s
sufficient to assume that any imprecision in measuring X is
very small compared to the variability in Y.

Are the data points independent? Whether one point is above or below the line is a matter of
chance, and does not influence whether another peint is above
or below the line.

Age the X and Y values intertwined? If the value of X iz used to calculate Y (or the value of Y is
used to calculate X then linear regression caleulations are
invalid. ~ ) ’ ’ '
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Use of 1m() in genetics

For a continuous cutcome,

Im(outcome ~ genetic.predictor, [...]

)

estimates the association between outcome and predictor

The optional arguments [...] might be

e data=my.data — your dataset
e subset=race==CEPH — use partial data
e weights — for advanced analyses

Model Description

predictor

Common name

Number of minor alleles

Presence of minor allele
Homozygous for minor allele
Distinct effects

for hetero/homozygous

(g==‘Aa’) + 2%x(g==‘aa’)
Or as.numeric(g)
(g==‘Aa’) | (g==‘aa’)
g==‘aa’
factor(g)

Additive
Cominant

2 parameter,
or "2 df"”

(Rice 2008)
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Use of 1m() in genetics

Some data; cholesterol levels plotted by genotype (single SNP)
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Use of 1m() in genetics

Additive model (the most commonly used)

cholestersl

A Aa as
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Use of 1m() in genetics

Dominant model (best fit to this data)

cholestersl

aa

K Van Steen 381



Bioinformatics Chapter 5: Population-based genetic association studies

Use of 1m() in genetics

Recessive model (least stable for rare aa)

cholestersl

A Aa as
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Use of 1m() in genetics

2 parameter model (robust but can be overkill)
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_K Van Steen

Im(): Estimates, Intervals, p-values

1m() produces point estimates for vour model;

> n.minor <- {g=="ﬁ‘a_"} 4+ 2*(g=="aa")
> my.lm <- 1m( cholesterol ~ n.minor )

> my.1lm
Call:
1m(formula = cholesterocl ~ n.minor)
Coefficients:
(Intercept) n.minor
0.2104 0.9507

— also available via my.1lm$coefficients.

The coefficients in the ocutput tell yvou the additive increase
in outcome associated with a one-unit difference in the genetic
predictor.

The coefficient for n.minor is in units of cholesterol
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1Im(): Estimates, Intervals, p-values

You will also want confidence intervals;
> confint.default(my.lm)

2.5 % 97.5 %
(Intercept) 0.08391672 0.3368275
n.minor 0.85279147 1.0486953

Remember to round these numbers to an appropriate number
of significant figures! (2 or 3 is usually enough)

We are seldom interested in the Intercept
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_K Van Steen

Im(): Estimates, Intervals, p-values

Two-sided p-values are also available;

> summary (my.lm)
Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) 0.21037 0.06426 3.274 0.00119 **
n.minor 0.95074 0.04977 19.101 < 2e—-16 ***

Signif. codes: O ‘***? 0.001 “*** 0.01 ‘*? 0.05 ‘.7 0.1 ¢ * 1

In this data, we have strong evidence of an additive effect of
the minor allele on cholesterol

summary (my.1lm) gives many other details — ignore for now

Confidence intervals are just Estimate & 2xStd.Error
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Use of gilm() in genetics

Logistic regression is the ‘default’ analysis for binary out-
comes

Qutcome Type Regression Scale
Cholesterol
Elocod Pressure | Continuous Linear Difference in OQOutcome
B MI

Death
Stroke Binary Logistic Ratio of odds
EMI=30

What are odds? Really just probability...
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Use of gim() in genetics

Odds are a [gambling-friendly] measure of chance;

=

0.8
I

Prob of survival, 10yrs
0.4

0.0

Al Aa aa
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Use of gim() in genetics

Odds are a [gambling-friendly] measure of chance;
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Example R code to perform small-scale analyses using GENETICS

library(DGCgenetics)
library(dgc.genetics)

casecon <- read.table("casecondata.txt",header=T)
casecon[1:2,]

attach(casecon)

pedigree

case <- affected-1

case

gl <- genotype(locl _1,locl _2)
gl <- genotype(loc2_1,loc2_2)
gl <- genotype(loc3 _1,loc3_2)
gl <- genotype(locl_1,locl_2)
g2 <- genotype(loc2_1,loc2_2)
g3 <- genotype(loc3_1,loc3_2)
g4 <- genotype(locd4 _1,locd_2)
gl
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table(gl,case)

chisg.test(gl1,case)

allele.table(g1,case)

gcontrasts(gl) <- "genotype"

names(casecon)

help(gcontrasts)

logit(case~gl)

anova(logit(case~gl))

1-pchisq(18.49,2)

gcontrasts(gl) <- "genotype"

gcontrasts(g3) <- "genotype"

logit(case~gl+g3)

anova(logit(case~gl+g3)) # This is in fact already a multiple SNP analysis
gcontrasts(gl) <- "genotype" # But you can see how easy it is within a
gcontrasts(g3) <- "additive" # regression framework
logit(case~gl+g3)

anova(logit(case~gl+g3))

detach(casecon)
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Example R code to perform small-scale analyses using SNPassoc

#Let's load library SNPassoc
library(SNPassoc)

#get the data example:

#both data.frames SNPs and SNPs.info.pos are loaded typing data(SNPs)
data(SNPs)

#look at the data (only first four SNPs)
SNPs[1:10,1:9]

table(SNPs|[,2])
mySNP<-snp(SNPsSsnp10001,sep="")
mySNP

summary(mySNP)
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snp10001
frequency percentage frequency percentage
T 237 7548 T 92 58 B0 HWE (pvalue): 0.281633
C 77 2452 CiT a3 3376
CiC 12 7.64

80
|

&0
|

40

20
|

TiT CiT CiC

plot(mySNP,label="snp10001",col="darkgreen")
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snp10001
frequency percentage frequency percentage
237 . TT 92 . HWE (pwalue); 0.251639
C 7T 24.52 CiT a3 3376
C/C 12 7.64

CiC

CIT

plot(mySNP,type=pie,label="snp10001",col=c("darkgreen","yellow","red"))
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Example R code to perform small-scale analyses using SNPassoc

reorder(mySNP,ref="minor")

gg8<-
c("het","hom1","hom1","hom1","hom1","hom1","het","het","het","hom1","hom2","hom
1","hom2")

snp(gg,name.genotypes=c("hom1","het","hom?2"))
myData<-setupSNP(data=SNPs,colSNPs=6:40,sep="")

myData.o<-setupSNP(SNPs, colSNPs=6:40, sort=TRUE,info=SNPs.info.pos, sep="")
labels(myData)

summary(myData)

plot(myData,which=20)
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Bioinformatics
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plotMissing(myData)
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Example R code to perform small-scale analyses using SNPassoc

res<-tableHWE(myData)

res

res<- tableHWE(myData,strata=myDataSsex)
res

What is the difference between the two previous commands?
Why is the latter analysis important?
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Example R code to perform GWA using SNPassoc
data(HapMap)

> HapMap[1:4,1:9]
id group rs10399749 rs11260616 rs4648633 rs6659552 rs7550396 rs12239794
rs6688969
1 NA06985 CEU CC AA 1T GG GG GG CC
2 NA06993 CEU CC AT CT CG GG GG CT
3 NA06994 CEU CC AA 1T CG GG GG CT
4 NA0O7000 CEU CC AT 1T GG GG <NA> CC

myDat.HapMap<-setupSNP(HapMap, colSNPs=3:9307, sort =
TRUE,info=HapMap.SNPs.pos, sep="")

> HapMap.SNPs.pos[1:3,]

snp chromosome position
1rs10399749 chrl 45162
2rs11260616  chrl 1794167
3 rs4648633 chrl 2352864
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Example R code to perform GWA using SNPassoc

resHapMap<-WGassociation(group, data=myDat.HapMap, model="log-add")

plot(resHapMap, whole=FALSE, print.label.SNPs = FALSE)

log-additive

-log (p value)

SNPs

> summary(resHapMap)
SNPs (n) Genot error (%) Monomorphic (%) Significant* (n) (%)

chrl 796 3.8 18.6 163 20.5
chr2 789 4.2 13.9 161 20.4
chr3 648 5.2 13.0 132 20.4

K Van Steen 399



Bioinformatics Chapter 5: Population-based genetic association studies

Genetic model: log-additive
o value u (01e-10] (1e-101]

chird
chra Lk, . il [ TR TTI SRR AT i i Lo L Ll boap il ld el Ll du gy

ch3 Il 1 Loty 1l PYRERI TT Y ||I|| 1 ITIPET DL PRTTTY R W 1 TR NI U 11 A pedul
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chra
chtE | ] b wl, | |III||I||I } L [ I TCTROOT  FYRPOT O ST s T 1|
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chrg
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plot(resHapMap, whole=TRUE, print.label.SNPs = FALSE)

K Van Steen 400



Bioinformatics Chapter 5: Population-based genetic association studies

Example R code to perform GWA using SNPassoc

resHapMap.scan<-scanWGassociation(group, data=myDat.HapMap, model="log-add")
resHapMap.perm<-scanWGassociation(group, data=myDat.HapMap,model="log-add",
nperm=1000)

res.perm<- permTest(resHapMap.perm)

e Check out the SNPassoc manual (supporting document to R package) to
read more about the analytical methods used
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Example R code to perform GWA using SNPassoc

> print(resHapMap.scan[1:5,])
comments log-additive
rs10399749 Monomorphic -

rs11260616 - 0.34480
rs4648633 - 0.00000
rs6659552 - 0.00000
rs7550396 - 0.31731

> print(resHapMap.perm[1:5,])
comments log-additive
rs10399749 Monomorphic -

rs11260616 - 0.34480
rs4648633 - 0.00000
rs6659552 - 0.00000
rs7550396 - 0.31731

perms <- attr(resHapMap.perm, "pvalPerm") #what does this object contain?
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Example R code to perform GWA using SNPassoc
> print(res.perm)

Permutation test analysis (95% confidence level)

Number of SNPs analyzed: 9305

Number of valid SNPs (e.g., non-Monomorphic and passing calling rate): 7320
P value after Bonferroni correction: 6.83e-06

P values based on permutation procedure:
P value from empirical distribution of minimum p values: 2.883e-05
P value assuming a Beta distribution for minimum p values: 2.445e-05
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(\ empirical distribution

— teorical distribution
— adjusted p value: 2.445e-05
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plot(res.perm)
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Example R code to perform GWA using SNPassoc

res.perm.rtp<- permTest(resHapMap.perm,method="rtp",K=20)
> print(res.perm.rtp)

Permutation test analysis (95% confidence level)

Number of SNPs analyzed: 9305

Number of valid SNPs (e.g., non-Monomorphic and passing calling rate):
7320

P value after Bonferroni correction: 6.83e-06

Rank truncated product of the K=20 most significant p-values:
Product of K p-values (-log scale): 947.2055
Significance: <0.001
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Example R code to perform a variety of medium/large-scale analyses using
SNPassoc

getSignificantSNPs(resHapMap,chromosome=5)
association(casco~snp(snp10001,sep=""), data=SNPs)
myData<-setupSNP(data=SNPs,colSNPs=6:40,sep="")
association(casco~snp10001, data=myData)

association(casco~snp10001, data=myData, model=c("cod","log"))
association(casco~sex+snp10001+blood.pre, data=myData)
association(casco~snp10001+blood.pre+strata(sex), data=myData)
association(casco~snp10001+blood.pre, data=myData,subset=sex=="Male")
association(log(protein)~snp100029+blood.pre+strata(sex), data=myData)
ans<-association(log(protein)~snp10001*sex+blood.pre,
data=myData,model="codominant")

print(ans,dig=2)
ans<-association(log(protein)~snp10001*factor(recessive(snp100019))+blood.pre,
data=myData, model="codominant")

print(ans,dig=2)
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sigSNPs<-getSignificantSNPs(resHapMap,chromosome=5,sig=5e-8)Scolumn
myDat2<-setupSNP(HapMap, colSNPs=sigSNPs, sep="")
resHapMap2<-WGassociation(group~1, data=myDat2)
plot(resHapMap2,cex=0.8)
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4 Tests of association: multiple SNPs
Introduction

e Choices to be made:
- Enter multiple markers in one model
= Analyze the markers as independent contributors (see earlier
example R code)
* Analyze the markers as potentially interacting (see Chapter 9)
- Construct haplotypes from multiple tightly linked markers and analyze
accordingly
e All these analyses are easily performed in a “regression” context
- In particular, for case / control data, logistic regression is used, where
disease status is regressed on genetic predictors
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Multiple marker testing is NOT the same as testing for epistasis

e Epistasis = gene-gene interaction (learn more about this later)

e Gene-Gene interaction studies come in different flavors (Marchini et al.,
2005)

- Disease associated interactions among unlinked markers.
- Search over all pairs of loci on genome
- Two-stage strategy

= first stage => search loci meeting with lenient threshold;
= second stage => test interaction between screened loci with strict
threshold.

 Power to detect interaction is affected by many factors (as before),
including allele frequency at the disease-associated loci and LD between the
markers and disease-associated loci.
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Example R code using SNPassoc

datSNP<-setupSNP(SNPs,6:40,sep="")

tag.SNPs<-c("snp100019", "snp10001", "snp100029")

geno<-make.geno(datSNP,tag.SNPs)

mod<-
haplo.glm(log(protein)~geno,data=SNPs,family=gaussian,locus.label=tag.SNPs,allele.lev=at
tributes(geno)Sunique.alleles,

control = haplo.glm.control(haplo.freq.min=0.05))

mod

intervals(mod)

ansCod<-interactionPval(log(protein)~sex, data=myData.o,model="codominant")
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SNPs interactions -- codominant model
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plot(ansCod)
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5 Dealing with population stratification

5.a Spurious associations

—
—
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Population

0000
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Q0 00

00 00

0000
0000.

Population

0000 ' 0000

 Methods to deal with spurious associations generated by population
structure generally require a number (preferably >100) of widely spaced
null SNPs that have been genotyped in cases and controls in addition to the
candidate SNPs.
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5.b Genomic Control

* In Genomic Control (GC), a 1-df association test statistic (usually, CAT) is
computed at each of the null SNPs, and a parameter A is calculated as the
empirical median divided by its expectation under the chi-squared 1-df
distribution.

 Then the association test is applied at the candidate SNPs, and if A > 1 the
test statistics are divided by A.

e There is an analogous procedure for a general (2 df) test; The method can
also be applied to other testing approaches.

 The motivation for GC is that, as we expect few if any of the null SNPs to be
associated with the phenotype, a value of A > 1 is likely to be due to the
effect of population stratification, and dividing by A cancels this effect for
the candidate SNPs.

e GC performs well under many scenarios, but can be conservative in
extreme settings (and anti-conservative if insufficient null SNPs are used).
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5.c Structured Association methods

e Structured association (SA) approaches are based on the idea of attributing
the genomes of study individuals to hypothetical subpopulations, and
testing for association that is conditional on this subpopulation allocation.

 These approaches are computationally demanding, and because the notion
of subpopulation is a theoretical construct that only imperfectly reflects
reality, the question of the correct number of subpopulations can never be
fully resolved....
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5.d Other approaches to handle the effects of population
substructure

Include extra covariates in regression models used for association
modeling/testing

e Null SNPs can mitigate the effects of population structure when included as
covariates in regression analyses.

e Like GC, this approach does not explicitly model the population structure
and is computationally fast, but it is much more flexible than GC because
epistatic and covariate effects can be included in the regression model.

 Empirically, the logistic regression approaches show greater power than GC,
but their type-1 error rate must be determined through simulation.

e Simulations can be quite intensive! How many replicates are sufficient?
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Principal components analysis

e When many null markers are available, principal components analysis
provides a fast and effective way to diagnose population structure.

* In European data, the first 2 principal components nicely reflect the N-S and
E-W axes

Unrelateds are “distantly” related

e Alternatively, a mixed-model approach that involves estimated kinship,
with or without an explicit subpopulation effect, has recently been found to
outperform GC in many settings.

e Given large numbers of null SNPs, it becomes possible to make precise
statements about the (distant) relatedness of individuals in a study so that
in theory it should be possible to provide a complete solution to the
problem of population stratification.
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6 Multiple testing

6.a General setting
Introduction

 Multiple testing is a thorny issue, the bane of statistical genetics.

- The problem is not really the number of tests that are carried out: even
if a researcher only tests one SNP for one phenotype, if many other
researchers do the same and the nominally significant associations are
reported, there will be a problem of false positives.

e The genome is large and includes many polymorphic variants and many
possible disease models. Therefore, any given variant (or set of variants) is
highly unlikely, a priori, to be causally associated with any given phenotype
under the assumed model.

e So strong evidence is required to overcome the appropriate scepticism
about an association.
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6.b Controlling the overall type | error
Frequentist paradigm

* The frequentist paradigm of controlling the overall type-1 error rate sets a
significance level a (often 5%), and all the tests that the investigator plans
to conduct should together generate no more than probability a of a false
positive.

* In complex study designs, which involve, for example, multiple stages and
interim analyses, this can be difficult to implement, in part because it was
the analysis that was planned by the investigator that matters, not only the
analyses that were actually conducted.
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Frequentist paradigm

* In simple settings the frequentist approach gives a practical prescription:
- if n SNPs are tested and the tests are approximately independent, the

appropriate per-SNP significance level a' should satisfy
a=1-(1-a)n,

which leads to the Bonferroni correction a’'= a / n.
 For example, to achieve a = 5% over 1 million independent tests means that

we must set a’' = 5 x 10™°. However, the effective number of independent
tests in a genome-wide analysis depends on many factors, including sample

size and the test that is carried out.
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When markers (and hence tests) are tightly linked

e For tightly linked SNPs, the Bonferroni correction is conservative.
e A practical alternative is to approximate the type-| error rate using a
permutation procedure.

- Here, the genotype data are retained but the phenotype labels are
randomized over individuals to generate a data set that has the
observed LD structure but that satisfies the null hypothesis of no
association with phenotype.

- By analysing many such data sets, the false-positive rate can be
approximated.

- The method is conceptually simple but can be computationally
demanding, particularly as it is specific to a particular data set and the
whole procedure has to be repeated if other data are considered.
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The 5% magic percentage

e Although the 5% global error rate is widely used in science, it is

inappropriately conservative for large-scale SNP-association studies:
- Most researchers would accept a higher risk of a false positive in return
for greater power.

e There is no “rule” saying that the 5% value cannot be relaxed, but another
approach is to monitor the false discovery rate (FDR) instead

 The FDR refers to the proportion of false positive test results among all
positives.
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FDR control

* |n particular,

# non—rejected # rejected
hypotheses hypotheses

# true null hypotheses
(non-diff. genes) U V mo
Type | error

# false null hypotheses
(diff. genes) T S mq
Type Il error

m— R R m
(Benjamini and Hochberg 1995: FDR=E(Q); Q=V/R when R>0 and Q=0 when R=0)
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FDR control

 FDR measures come in different shapes and flavor.

- But under the null hypothesis of no association, p-values should be
uniformly distributed between 0 and 1;

- FDR methods typically consider the actual distribution as a mixture of
outcomes under the null (uniform distribution of p-values) and
alternative (P-value distribution skewed towards zero) hypotheses.

- Assumptions about the alternative hypothesis might be required for the
most powerful methods, but the simplest procedures avoid making
these explicit assumptions.
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Cautionary note

 The usual frequentist approach to multiple testing has a serious drawback
in that researchers might be discouraged from carrying out additional
analyses beyond single-SNP tests, even though these might reveal
interesting associations, because all their analyses would then suffer a
multiple-testing penalty.
|t is a matter of common sense that expensive and hard-won data should
be investigated exhaustively for possible patterns of association.
e Although the frequentist paradigm is convenient in simple settings, strict
adherence to it can be dangerous: true associations may be missed!
- Under the Bayesian approach, there is no penalty for analysing data
exhaustively because the prior probability of an association should not
be affected by what tests the investigator chooses to carry out.
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Example R code using SNPassoc

myData<-setupSNP(SNPs, colSNPs=6:40, sep="")

myData.o<-setupSNP(SNPs, colSNPs=6:40, sort=TRUE,info=SNPs.info.pos, sep="")
ans<-WGassociation(protein~1,data=myData.o)

library(Hmisc)

SNP<-pvalues(ans)

out<-latex(SNP,file="c:/temp/ansl.tex", where=""h",caption="Summary of case-control
study for SNPs data set.",center="centering", longtable=TRUE, na.blank=TRUE,
size="scriptsize", collabel.just=c("c"), lines.page=50,rownamesTexCmd="bfseries")

WGstats(ans,dig=5)
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plot(ans)
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Example R code using SNPassoc

Bonferroni.sig(ans, model="log-add", alpha=0.05,include.all. SNPs=FALSE)

pvalAdd<-additive(resHapMap)
pval<-pval[lis.na(pval)]

library(qvalue)

gobj<-gvalue(pval)
max(qobjSqgvalues[qobjSpvalues <= 0.001])

procs<-c("Bonferroni","Holm","Hochberg","SidakSS","SidakSD","BH","BY")

res2<-mt.rawp2adjp(rawp,procs)
mt.reject(cbind(resSrawp,resSadjp),seq(0,0.1,0.001))Sr
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7 Assessing the function of genetic variants

Criteria for assessing the functional significance of a variant

Criteria

Mucleolide sequence

Evoluticrarny
consaration

Fopulation genetics

Expetimental evidence

Exposures (for example,
genctype—environment
imeraction studies)

Epidemiclogical
evidenca

Strong support for

functional significance

Varant disrupts a known furctional
or structural rmotf

Consistent evidencs friom multlple
approaches for conservation across
gpedas ard multigens familes

In the abeence of laboratory error, strong
clordationes from eripooiod population
freqLencies in cases andfor controls in a
particular ethnicity

Consistent effecs from mulipls lines of
exparimental evidence; effact in human
ocontext is establshed; effect in target
tizaus 2 known

Varient is known to affect the
metebolism of the exposurein
the relevart target tissue

Consistent and reproducible eports of

Moderate support for

funectienal signifizance

ariantis a missense change or disrupts a

putative functional metif; changes to protein

tructure micht oocur

Evidence for conssnvaticn across specles
or muligene families

In the ebsence of labaorecory evor, moderate
to smal deoviationsfrom cripoced population
frequencies in cases and/cr controls; effects

are notwel characterzed by ethniciy

Zome possibly inconsistent) evidence for
function fromr expaimeantal dara; affect in
hurnan context or target tissue is unclear

variant might affec: metabolism of the
exposure or one of ite componsnts;
effect in target tissue might not be known

Feports of association exist;

modlzrate-to-large magnitude associations replicafion studies are naot availalle

Evidence against
functional significance

\ariant disrusts a non-coding
regicr with ro known fusctioral or
structural rmotif

Muclectide cr amino-acld residus
rot congered

Populetion genetics data indicates
ro dedations from oxpoctod
proporions

Experimentsl evidence consistently
inclicatas no b inctional effact

Variant doss not afect metabdizm
of exposure of interest

Pricr sludies show no efiect of
variant

(Rebbeck et al 2004)
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8 Proof of concept

Yol 447|7 June 2007 |doi W0 1036/ natum058M nafure

ARTICLES

Genome-wide association study of 14,000
cases of seven common diseases and
3,000 shared controls

The Wellcome Trust Case Control Consortium®

There is increasing evidence that genome-wide association (GWA) studies represent a powerful approach to the

id entification of genes involved in common human diseases. We describe a joint GWA study (using the Affymetrix Gene Chip
500K Mapping Array Set) undertaken inthe B ritish population, which has examined — 2,000 individuals for each of 7 major
dizeazec and a shared cot of ~ 3,000 controls, Cace-control comparisons identified 24 independent association signale at
P =5 10"": 1in bipolar disorder, 1 In coronary ar tery disease, @ in Crohn's disease, 3 in rheumatold arthritis, 7 in type 1
diabetes and 3 in type 2 diabetes. On the basis of prior findings and replication studies thus-far completed, almost all of these
signals reflect genuine susceptibility effects. We observed association at many previously identified loci, and found
compelling evidence that some loci confer risk for more than one of the diseases studied. Across all diseases, we identified a
large number of further signals Gncluding 58 loci with single-point P values between 1077 and 53<1077) likely to yield
additional susceptibility loci. The im portance of appropriately large samples was confirmed by the modest effect sizes
observed at most loci dentified. This study thus represents a thorough validation of the GWA approach. It has also
demonstrated that careful use of a shared control group represents a safe and effective approach to GWA analyses of
multiple disease phenotypes; has generated a genome-wide genotype d atabase For future studies of common diseases inthe
British population; and shown that, provided individuals with non-European ancestry are excluded, the extent of population
stratification in the Britizh population is generally modest. Qur findings offer new avenues for exploring the pathop hysiology
of these important disorders, We anticipate that our data, results and software, which will be widely available to: other
investigators, will provide a powerful resource for human genetics research,
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